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PRACTICAL STABILITY CRITERION AND ITS APPLICATION 

TO DIGITAL SIMULATION 

by Lesl ie L. Scalzott and  Car l  F. Lorenzo 

Lewis Research Center  

SUMMARY 

A stability criterion has been developed for use with digital simulations o r  graphical 
The criterion used is a simple one, which basically requires ultimate state bound- data. 

edness of the time function representing the system output. 
so that a transient of finite duration may be used as a practical indication of stability. 

A stability test  utilizing the criterion has been implemented into a general digital 
program which will allow the determination of system stability directly by computer. 
This program and criterion was demonstrated for  three applications representing: (1) a 
linear system, (2) a continuously nonlinear system, and (3) a discontinuously nonlinear 
system. 

Techniques are established 

INTRODUCTION 

Currently, there is an increased interest in simulation of physical systems using 
digital computers. This is especially t rue of highly nonlinear systems and systems of 
great complexity both linear and nonlinear. Of particular interest in such systems is 
the response of the system to either a change in operating point o r  response to  some 
form of input disturbance. Generally it is desirable to form a stability map showing the 
effect of two o r  more system parameters on stability, where stability is some desirable 
property defined by the investigator. 

Presently, to obtain a stability map of a simulated system, a great many transients 
must be  simulated in some organized method, all these transients must be examined to 
determine whether o r  not the response is stable by some criterion, and either these re- 
sults must be mapped directly or  further refined with more transient responses. Clearly 
it would be desirable to eliminate reading all these transient responses out of the digital 
computer to form the stability map. Indeed, if a computer program could be evolved 



which would indicate the stability of the system, the user  would be  saved by the burden of 
applying the stability cr i ter ia  to the transients and the time he must wait between running 
separate transients. Thus a stability map could be found directly, without the investiga- 
to r  in the loop. 

stability. References 1 and 2 are examples of papers that deal with the general problem. 
Most of the work had as its objective the analytical determination of stability for systems 
of differential equations. Notable, of course, are the classical  efforts of Liapunov, 
Poincarb, and Lagrange. Current efforts in the English l i terature (much of the effort 
has been by Russian investigators) are those of Bellman (ref. 3) and LaSalle and Lefshetz 
(ref. 4). 

The above efforts, as stated, are directed toward analytical solutions of the stability 
problem. To the authors' knowledge, no work has been done in implementing a stability 
criterion that can be applied directly to the numerical solutions of systems of differential 
equations. Direct implementation of these classical  criteria is not practical, since it 
would require an unperturbed solution and the establishment of the classical E - 6 rela- 
tion (necessitating a large number of E trials). (Symbols a r e  defined in appendix A. ) 
Reference 2 presents a discussion of this classical cr i ter ia .  Instead, the present study 
requires the solutions to have certain desirable properties which approximate the char- 
ac te r  of those classical cr i ter ia .  These required properties a r e  then formalized into a 
working stability criterion. Such a stability cri terion and its implementation into a digi- 
tal program are the subjects of this report. 

The results of this study should also be useful in the areas of digital adaptive control 
systems, data analysis, and as a working criterion for  use with experimental studies. 

A substantial background of material  exists in the l i terature in the general area of 

, 

GENERAL SCHEME FOR STABILITY ANALYSIS 

The general scheme for  determining the stability of a t ime function generated by 
digital simulation can be understood by reference to figure 1.  There a r e  three basic 
elements under consideration: (1) the simulation proper, 

Simulation analysis 

parameter New I 

which generates an output time 

(auxil iary 
information) 

logic 

or extended 
duration 

Figure 1. - Block diagram for computer stabil ity analysis. 
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function in serial form, (2) a routine, which 
its stability, and (3) a control logic routine, 
to achieve the neutral stability points. 

examines the time function and 
which would change the system 

determines 
parameters  

Since a practical approximation to stability is being developed, it is clear  that a 
transient of infinite duration cannot be examined. Hence, the stability analysis routine 
must be capable of making a judgment as to system stability based on a finite observation 
time. The overall scheme, therefore, will be  to assign an  observation time over which 
the t ime function will be analyzed and determined to be either stable, unstable, or neu- 
trally stable. If the observation t ime is not long enough, the time function will be condi- 
tionally stable or conditionally unstable. If a conditional situation develops in the search 
for  a stability map, the control logic a lso has the function of progressively increasing the 
simulation time by a time increment until an unconditional stability o r  instability occurs. 
The cr i ter ia  on which the above conditions are based will be defined formally in the next 
section. 

This report basically deals with the stability analysis block. Throughout the studies 
presented herein, relatively simple control logic is used. The part of the control logic 
which determines the new system parameters  can be  complex. This problem is strongly 
analagous to the problem of determining roots of equations using digital computer tech- 
niques, for  which an excellent background of material  is available (e. g. , ref.  5) .  

The overall problem can be reduced to the following: Given a function of time which 
represents the output of a system to some bounded input disturbance, determine the sys- 
tem stability in some finite observation time. 

Clearly the choice of a value for  observation time is crit ical  in that the user  must 
recognize for  his system the dynamic elements with the longest response t ime and choose 
the observation time appropriately . 

possibility of separate parts of a simulation independently being stable o r  unstable exists, 
then all these outputs must be monitored for  stability. 

In the preceding discussion only a single system output has been examined. If the 

STAB ILlTY C RlTER ION 

The previous section discussed the general problem of digital determination of the 
stability of a time function. It was premised on the existence of a technique to  discern 
stability using only the perturbed transient responses. The stability analysis block 
(fig. 1) should be capable of handling any type of time function in order  to be generally 
useful; that is, time functions should include responses which are continuous or discon- 
tinuous, oscillatory or nonoscillatory, and periodic o r  aperiodic. Furthermore, the sys- 
tem responses of both linear and nonlinear systems are of interest. The analysis should 
be flexible in order  to  have general applicability and should also be  easily implemented 
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on the digital computer for  use with digital simulations and should use computing time 
economically . 

requirement will be  ultimate state boundedness of the output t ime response. 
Fundamentally the cri terion is an approximation to asymptotic stability; that is, the 

Stability criterion for infinite observation time. - A system is con- 
sidered to  be stable if, after the completion of a bounded perturbation 
on the system, its motion never exceeds some E distance from the 
bias after some t ime tl; that is, 

/Bias - f(t) l  - < E for  t > tl 

where 

If there does not exist a time tl, such that the motion never exceeds 
the prescribed E distance from the bias, the system is called un- 
stab le. 

Physically, the stability definition requires that, after the system transients (due to 
either a perturbation or  change in operating point) die out, the system response remains 
within a prescribed bound about the new operating point. It further considers simple 
divergences and growing envelopes to be  unstable. 

If the stability of linear constant coefficient systems based on the roots of the char- 
acterist ic equation is considered, the above definition of stability is compatible with lin- 
ear stability fo r  all points with the possible exception of those on the imaginary axis; 
that is, a neutrally stable linear system may oscillate forever at some amplitude greater 
than the prescribed E bound and, based on the given definition, would be unstable. This 
wil l  not be a problem, however, since, in the study of such systems, the neutral stability 
point (linear stability) will generally be  found by approaching from the positive and nega- 
tive damping sides and will, therefore, yield the same stability map. 

The following is a practical criterion based on the preceding infinite observation 
time definition. 

Stability cri terion for  finite observation time. - A system is con- 
sidered to be  unconditionally stable if, after the completion of a 
bounded perturbation on the system, the motion never exceeds some E 

distance from the bias  after some time tl but before completion of 
some observation time tc. It is further required that the slope of the 
stability curve be  negative. The system is conditionally stable if, 
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under the preceding conditions, the slope of the stability curve is posi- 
tive. If there does not exist a time tl < t, such that the motion does 
not exceed the prescribed E distance and if the slope of the stability 
curve is positive the system is unconditionally unstable. If, under 
these conditions the stability curve has a negative slope, the system 
is conditionally unstable. The stability curve is defined as the locus 
of I ~ i a s  - Extrema I .  

This criterion is also stated in table I. The difference between the finite and infinite 
observation time cases is the additional slope requirement for  the stability curve. This 
slope requirement is used as an indication of the future convergence of the envelope of 
the time function. 

Stability curve 
boundedness requirement 

TABLE I. - THEORETICAL STABILITY CRITERIA FOR 

Slope 
requirement 

FINITE OBSERVATION TIME 

Bias converges 
Bias does not converge 

Functions 

- - - - - - - - 
------- - 

0 scillatory 

Nonoscillator y 

Condition 

Stable, unconditionally 

Stable, conditionally 

Unstable, unconditionally 

Unstable, conditionally 

Neutrally stable 

Neutrally unstable 

Stable, unconditionally 
Unstable, unconditionally 

IBias - Extrema I < E 

lBias - Extrema1 - < E 

[Bias  - Extrema1 > E 

/B ia s  - Extrema I > E 

1 Bias - Extrema I < E 

[Bias  - Extrema1 > E 

- 

- 

Slope < 0 

Slope > 0 

Slope > 0 

Slope < 0 

Slope = 0 

Slope = 0 

From a practical point of view, this definition still presents some difficulties. Con- 
sider, for  example, a case of a time function with beats. While the function may be 
bounded, it may be beating very slowly, and give an apparent positive slope for the sta- 
bility curve. This difficulty, however, can be handled by programming techniques which 
consider the extrema of the envelope instead of the extrema of the time function. This 
will be described in detail in the next section. 

In essence this finite observation time criterion, modified by the above technique, is 
the stability analysis which has been implemented in this study. Further checks and fea- 
tures  that have been built into the program are discussed in the next section. 

This criterion is different from the classical criteria of Liapunov, Poincar6, and 
Lagrange as discussed in reference 2, since a different goal is desired. The classical 
cases generally compare the perturbed and unperturbed responses. Also this is done 
analytically instead of numerically. In the present situation the stability is determined 
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without necessarily having the mathematical form of the response and without having the 
unperturbed motion of the system. 

DIGITAL PROGRAM 

A digital computer program was written based on the criterion presented in the pre- 
vious section. This program is called DIGSTA (digital - - stability analysis). A flow dia- 
gram of the computer program and a complete FORTRAN IV listing are given in appen- 
dix B. All the checks and definitions applied to the system under investigation are illus- 
trated in this appendix. DIGSTA is written in FORTRAN IV computer language which can 
be readily translated into other languages. A simplified flow diagram of DIGSTA is pre- 
sented in figure 2 to  assist in understanding the general logic of the stability routine. 
This figure also illustrates the general scheme used for the determination of stability. 
Here, the following logic pattern is used. 

The time function generated by the system response is used as an input f( t ) .  A 
check is made to see if the bias value has been found. If the bias is not found, a time 
check is made. If t < tc, the investigation continues with a new f(t) point. If the bias 
does not converge for  t - > tc, the response cannot be bounded and is therefore considered 
unstable (see proof in appendix C). This assumes that tc is chosen to be a large enough 
finite time to be  representative of an infinite time for  the system being studied. If the 

Yes 

& converging 

Conditionally Unconditionally 

Figure 2. - Simplified flow diagram of DIGSTA. 
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bias  is found, a check is made on boundedness for  some prescribed number of extrema. 
If the boundedness condition is satisfied, the system is stable and the slope of the stabil- 
ity curve is then checked. If the slope is negative, the system is unconditionally stable; 
if it is positive, it is conditionally stable; and if it is zero, it is called neutrally stable. 
If the system is not bounded for  N extrema in one observation time, a slope check is 
made again. Herein, positive slopes indicate unconditional instability and negative slopes 
conditional instability. 

rTime function; input to system, f(t) 

lIV: ,-Running average, RAV ll/v n----Maxima7 

Time- 

Figure 3. - Typical transient. 

There are several  t e rms  used in DIGSTA which should be defined o r  mentioned here. 
Figure 3 shows a basic curve which could be operated on by DIGSTA. 
tifies names referred to in this report and in the routine. 

lished. 

This figure iden- 

Before a boundedness check can be applied, the bias of the system must be estab- 
The bias level has been attained when 

In the program the running average (RAV) is defined as 
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The bias is the converged value of the running average and, therefore, ideally requires 

d 
dT 
- (FtAV) = 0 

Two possible numerical requirements fo r  convergence are 

lRAVi -RAV. 1-1 I - < IRAVi-,IAtC 

and 

The first condition is satisfactory when the RAV is a large number since it requires the 
running average to converge to within some percentage of the required value. When the 
bias is near zero, however, RAV is approaching zero. Therefore, the condition re- 
quires a smaller and smaller percentage and convergence is not achieved. The second 
condition is satisfactory around zero; however, large values of FtAV could require too 
small  a percentage e r ro r .  The program, therefore, uses condition 1 for  

and condition 2 for 

A s  mentioned previously, the slope of the stability curve is used in defining the 
system as being conditionally, unconditionally, or neutrally stable o r  unstable. In 
DIGSTA only the sign of the slope is of interest  and this sign is obtained by an analysis 
of the signs of each side of the envelope of the function. The sign of one side is defined 
as the arithmetic sign of (EXTRi - EXTRi-2) and is called SLOPE1. The sign of the 

other s ide isdef ined  as the arithmetic sign of (EXTRi 
EXTRi-3) and is called SLOPE2. If sign of (EXTRi - 

- 
TABLE II. - DUMMY VARIABLE 

AS FUNCTION OF SLOPE EXTRi- 1) is positive (negative) then SLOPE 1 is the upper 
envelope of the curve and SLOPE2 is the lower envelope 
and conversely if (EXTRi - EXTRi-l) is negative. The 
sign of the slope of the stability curve then is given by I I I I 

SGN(MM SGN(EXTRi - EXTRi-l)) where the dummy vari- 
able MM is determined from table II. 
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I n  EXTRi-7 EXTR: 

BEXTRi-2 BEXTRi 

ti-2 ti 

BEXTRi-2 BEXTRi I 

N > 2  

I ti-2 t i  N > 5  

Figure 4. - Beat and high-frequency phenomena. Figure 5. -Choice of index number. 

Now, a -1.0 value of MM SGN(EXTRi - EXTRi-l) indicates that the envelope is 
converging and a 1 .0  value indicates divergence. Then this product together with the 
boundedness requirement gives a stability indication. 

positive or both negative) and is a warning to the investigator. Herein, +9.9 indicates 
an unbounded function and -9.9 indicates bounded. 

DIGSTA performs a beat and high frequency oscillation investigations on the func- 
tion of interest. This is done by examining the envelope of each side of the time func- 
tion for  changes in the arithmetic sign of the slope. Changes in sign are an indication 
of those phenomena. When this occurs, DIGSTA refers  to the extrema of the extrema 
(BEXTR) in lieu of EXTR. 

Since DIGSTA is a routine used in  conjunction with a main program, certain con- 
stants and variables must be made common to both programs. These t e rms  a r e  
IPRINT, KlK2, L, M, N, DELTAT, EPSLON, T, TPREV, Y, YP, TCRIT, and 
TINCR. They a r e  defined in  appendix A and values a r e  recommended where applicable. 

Certain discretion must be exercised in defining some of the constants. In particu- 
lar, N must be chosen so as to be sufficiently large to account for  peculiarities en- 
countered when investigating a system that is beating or has  high-frequency oscillations 
superimposed; that is, N must be larger than the number of consecutive, similarly 
signed slopes of odd-numbered intervening extrema (see fig. 5). 

within an €-band of the bias  for  a system to be defined as being stable, N is also used 
as 

The -1-9.9 value denotes that the signs of the envelopes a r e  contradictory (i. e., both 

This method is illustrated graphically in figure 4. 

In addition to being the number of successive stability curve points required to be 
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(1) The number of successive slopes required to define a beat or high frequency 

(2) The number of successive slopes required to define a system as no longer 

If the user  desires  to alter any of these criteria, he can readily do so by adjusting the 
pertinent FORTRAN "IF statement" in DIGSTA. 

TCRIT, TINCR, DELTAT, and EPSLON values. Adequate time must be allowed to per-  
mit the program to solve for  the bias and then apply the system stability investigation. 

In most applications the settling time can generally be  gaged by examination of those 
system components with the longest characteristic time. For first order  systems the 
time constant T is the controlling factor, and for  the second order,  the parameter 
l/CUN is the controlling factor. A choice of TCRIT of 10 or  more t imes the greatest 
characteristic time should be suitable for  most "linear like" systems. Smaller E val- 
ues  require larger TCRIT values. 

For an unstable configuration this amount of t ime should be  adequate to establish the 
instability. The crit ical  factor here  is that the user  at least allows adequate time 
(TCRIT) to solve fo r  the bias  for  the stable situation. 

purposes although somewhat slow to converge. If, after TCFUT has elapsed, the system 
has been identified as being conditionally stable or unstable, the user  may deem it appro- 
priate to increase the observation time. Therefore, TINCR may be assigned a nonzero 
value. Also, DELTAT (At) must be chosen to be sufficiently small  to reasonably define 
the extrema. Using information concerning the system under investigation, the user  de- 
fines an EPSLON value in the main program which establishes the maximum acceptable 
amplitude for  system stability. 

locations). Also, as a typical example, the relay controller simulation and its logic sec- 
tion required 64 storage locations. This total is small  relative to that available on the 
larger computers. This advantage will prove particularly useful when DIGSTA is coupled 
with a main program that requires a large number of storage locations. Also, DIGSTA 
can be easily implemented to the program of interest since either equations or data can 
be operated on by the stability program. 

To handle physical data containing noise, some care  is necessary in the selection of 
the N number as discussed previously. Another asset  of DIGSTA is the small  additional 
time requirement. An exponentially decaying cosine function was operated on by DIGSTA 
and was found to be stable after 0.19 minute of computer time and 18.101 seconds of 
simulation time (DELTAT = 0.001 sec). This transient was then run without DIGSTA for  
18.101 seconds of simulation time. The computer time required for this case was 

oscillations 

beating o r  having high frequency oscillations (2N) 

Similarly, the user  must have an insight into his  problem so  he can select reasonable 

It is the authors' feeling that the BIAS as presently defined is satisfactory for most 

One merit  of DIGSTA is the small  amount of storage space required (113 storage 
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0.09 minute. 
doubles the time required. 
have a large computer time requirement. This example merely demonstrates that 18 101 
data points were analyzed by DIGSTA in 0.10  minute. This may be used to estimate the 
time required by DIGSTA. 

This example should not be interpreted to  mean that the use of DIGSTA 
The transient routine could be  quite complex, and it could 

Contro l  Logic 

Some control logic is needed to  adjust the system parameter being varied to achieve 

Two values were chosen to be the bounds of the 
the stability locus. In the applications that follow an elementary technique was used to 
iterate to the neutrally stable condition. 
parameter.  One of these was assumed to be stable and the other unstable. An initial 
parameter value between the two limits was chosen. 
stable, a constant value was added to the initial guess until a parameter value was found 
that rendered an unstable system (and, conversely, for  the unstable system). Then it 
was necessary to i terate between these last two values. 
choosing a value midway between these extremities and thereby establishing new bounds. 
This process was repeated until the two limits were an assigned percentage apart. Then, 
the neutrally stable point was defined as the stable limit. This technique can be modified 
or  replaced in order  to increase efficiency. One alternative for  linear-like systems 
would be  to use the slope of the envelope of the last trial as a basis  for  selecting a new 
trial point. 

that the adjustable parameter is so chosen that there is an underflow (X - < 
overflow (X - > 10 
section can then adjust the parameter and the investigation can be continued. DIGSTA 
has been written to allow reentering the stability subroutine after such a computer oper- 
ation stoppage without a loss of continuity. 

If the system was then found to be  

The method used was that of 

For the computer used, there is a restar t  capability. This means that, in the event 
or  an 

38 ) or  a division by zero (computer arithmetic e r rors ) ,  the control logic 

APPLICATION OF DIGITAL PROGRAM 

The program developed in the preceding section has been applied to a ser ies  of ele- 
mentary functions to verify program operation and has also been applied to three cases  
of interest to demonstrate use of the program. 

The elementary functions were sines and cosines with exponential decay and growth 
functions as multipliers. These were studied with and without bias and combinations of 
functions were studied to simulate a beating situation. All these functions gave proper 
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stability indications with the cri terion as previously defined. 

nonlinear system with a continuous type (mild) nonlinearity, and (3) a system with a dis- 
continuous type (hard) nonlinearity. 

The three practical cases  include study of (1) the stability of a linear system, (2) a 

Injector 

Linear System Stability 

Chamber fill 
dynamics 

dead time 

A stability study was made of the dynamics of a simple monopropellant rocket engine 
system with a linear injector. It consists of an  injector of the form wi = K(PT - Pc), a 
pure dead time representing propellant vaporization t ime and a first order  lag represen- 
tation of the chamber f i l l  dynamics. The equations defining this system are as follows: 

T-  dPC + Pc = KIWb 
dt 

Wb(t) = Wi(t - a) 

These equations are expressed in block diagram form in figure 6, using Laplace notation. 

Figure 6. - Block diagram for rocket engine stability study. 

Numerical approximations to the above equations were used to generate the time function 
required for  the stability analysis. 

The following nominal conditions were used: 

2 Chamber pressure differential, Pc, psi; N/m . . . . . . . . . . . . . .  682; 4. 70X106 
Weight flow, w, lb/sec; kg/sec . . . . . . . . . . . . . . . . . . . . . . . . .  463; 210 

Delaytime, 0, sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.002 
Time constant, 7, sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.001 

Chamber gain constant, K1, sec/in. 2; sec/cm 2 . . . . . . . . . . . . . .  1.4721; 0.2282 

I 



0 TCRIT 

Unconditionally 

Yes 

Increase Increase 
TCRIT 

Figure 7.  - Digital implementation for rocket engine chugging problem. 
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Figure 8. - Stability map for rocket engine with linear injector. 

The critical time tc for this analysis was chosen as  1 second. Also N = 6 and a 
At of 0.00001 second were used. A flow diagram which shows how the simulation, sta- 
bility subroutine and control logic were combined is presented in figure 7.  For 

6 2 
E = 1500 psi (10.34X10 N/m ), the program was asked to determine the injector A P  to 
within 1 psi  (6.89X10 N/m ) required for  stability for a given dead time. This, in turn, 
was repeated fo r  the number of dead time values required to form the graph of figure 8. 
The disturbance used to excite the system was a step in the tank pressure PT from 0 to 

6 1130 psi  (0 to 7 . 7 9 ~ 1 0  N/m2) at time zero.  
The area above the curve in the figure indicates injector pressure drops for which 

the system is stable, and that below the curve, unstable. It will be noted that stability 
as determined from the roots of the characteristic equation (see ref. 6 for technique) fell 
on the same line within readability limits. 

To get the 12 stability points shown in this figure required the simulation of 156 
transients. The E value of 1500 psi  (10.34X10 N/m ) was used in the stability cri terion 
since the initial large transient would have taken significant time to a r r ive  within a 
smaller E band. This is permissible since linear system stability is being studied. 

3 2 

6 2 

Nonlinear System Stability (Continuous Nonli nearity) 

In order  to study a mild nonlinearity, the rocket system simulation discussed in  the 
above section was modified by assuming a nonlinear injector characteristic; that is, 
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Wi = K2 dPT - pc 

Also, (PT - Pc) was limited to zero  so that the back flows were not possible. The nomi- 
nal conditions are the same as the above case. For these conditions, E values of 10 and 

4 4 100 psi (6.89xlO to 68.9X10 N/m2) were studied. The stability of this system in re- 
sponse to the same input as studied previously is shown in figure 9. 
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Figure 9. - Stability map for rocket engine with square law injector 

Normally, to handle this type of nonlinearity, the method of small  perturbations 
would be applied to linearize the system equations. These, in turn, a r e  analyzed based 
on the roots of the characteristic equation. This analysis has been done and the results 
of such a linearization are also plotted in figure 9. The difference is an  indication of the 
effect of the nonlinearity on system stability. The effect of the square law injector is to 
distort the weight flow wave shape. This distortion shifts the average-value weight flow 
during dynamic oscillations, which, in turn, increases the pressure drop required to 
stabilize the system. 

the difference between the stability curves is dependent on the s ize  or  harshness of the 
input disturbance. 

In this study the smaller values entailed longer simulation t imes than would be en- 
countered in the linear case. 

The magnitude of the bias  shift depends on wave amplitude. Thus, the magnitude of 

Nonl i near System Sta bi I ity ( Disconti n uous No nl i near ity) 

For this application, a stability analysis was made for a system in which a relay is 
used to  control the position of an  inertial torsional servo. The block diagram f o r  this 
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Figure 10. - Block diagram for position control torsional servo. 

system is shown in figure 10. The defining equations for  this system are 

d2 8 de T = I -  
dt 2 'KO; 

T = KITR 

a a - - < c p < -  
- 2  

a 
2 

(-1 cp < - -  

~ p = e  - e  set 

The relay controller is being studied, to demonstrate the use of DIGSTA for  limit cycle 
forms of operation. The nominal conditions for  this analysis were 

Damping constant, KD, ft-lb-sec; m-kg-sec . . . . . . . . . . . .  0.0001; 0.138X10 -4 
-4 Moment of inertia, I, ft-lb-sec; m-kg-sec . . . . . . . . . . . . . .  1.000; 0.138X10 

Limit of angular position, a, r a d .  . . . . . . . . . . . . . . . . . . . . . . . . .  0.01745 
Desired 8 value, Oset, rad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 

In.the DIGSTA subroutine the following values were used: 

Critical time, tc, s e c .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Number of extrema, N 5 
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Figure 11. - Stability map for torsional position control servo. 

In this particular study, some difficulty was encountered in arriving at a valid simu- 
lation. A s  a result, since the problem is piecewise linear, the differential equations 
governing the behavior of the output over any time interval were solved analytically. 
This yielded an algebraic equation which in turn was solved to generate the system out- 
puts. This equation was solved in a serial form, which formed an adequate simulation 
input for  the digital subroutine. The relay dead band was *O. 0087265 radian (*1/2'). 
The disturbance was an initial angular velocity of 0.005 radian per  second. 

a K1 (within 0.001) was established which would indicate stability for  some value of E .  

In this case, the E value corresponds to  the acceptable limit cycle amplitude. Also in- 
dicated in this study are the effects of variations of servodamping KD. 

The study involving limit cycles presented some small  difficulty since long simula- 
tion t imes were required to a r r ive  at f ina l  stability indications. For KD = lX10-4 and 
E = 0.00878 radian, 44.7 seconds of transient were required. This is due to the slow 
convergence or divergence of the envelope inherent in this problem. 

The above are typical applications in linear and nonlinear controls and dynamics 
systems. The program could also be used with a real system as an indication of stabil- 
ity. This is possible since the time function generated from the computer simulations 
a r e  in serial form, and the subroutine would not see any difference. Some problems in 
control logic would exist. However, it might not even be necessary to have a control 
logic unit if conditional stability indications were acceptable for a given application. 

The results of this study are shown in figure 11. Here, for  a given value of damping 
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This ability to  examine real systems opens the avenue to possible applications in 
digital adaptive control systems. 

SUMMARY OF RESULTS 

The most important result  of this work is that a stability criterion has been evolved 
which will allow a stability analysis of systems for  bounded, finite duration inputs. The 
criterion is general in that it will function properly fo r  practical time functions, and it 
is flexible to the extent that the user  can pick his boundedness band and special index 
numbers. The techniques evolved in the present study can a l so  be  used as a basis  for  
different o r  more sophisticated criteria. The problem of working with a finite observa- 
tion time has been satisfactorily handled by use of the stability curve, that is, the infor- 
mation in the envelope of the time function. 

requires modest additional computing time to determine the stability bounds directly, 
furthermore, a FORTRAN program implementation of the cri terion together with a 
simple control logic has been presented. 

continuously nonlinear, and discontinuously nonlinear dynamic systems. For these sys- 
tems stability maps have been generated directly from the computer without the need of 
examining separate system transients. 

The program allows the reduction of turn-around time in the use of the digital com- 
puter for mapping stability results, and allows a uniform basis  for  stability analysis. 

The control logic used in the applications presented has been simple, it is likely that 
a significant economy in computing time can be  gained by implementing more sophisti- 
cated techniques, that is, techniques analogous to those used for root finding of equations. 

The stability criterion has been implemented for  use with the digital computer and 

The program has been demonstrated for three applications which cover a linear, 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 29, 1967, 
180-31-01-05-22. 
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APPENDIX A 

SYMBOLS 

Engineering Symbols: 

a 6 limit, rad 

C convergence constant 

I 

K gain constant 

chamber gain 

K2 injector gain 

P pressure,  psi; N/sq m 

A P  

S Laplace variable 

T torque 

t time 

A t  time increment 

moment of inertia, lb-ft-sec2; kg-m-sec 2 

K1 

pressure differential, psi; N/sq m 

crit ical  time tC 

W weight flow, lb/sec; kg/sec 

6 angular position 

desired 6 value 'set 
50 position e r r o r  

E allowable oscillation amplitude 

(T delay t ime 

7 time constant 

r damping constant 

natural frequency, rad/sec N w 

Sub scr ipts  : 
b burning 

C chamber 

D damping 

I injector 
i current 

19 
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R required 

T tank 

1 initial 

FORTRAN Variables Common to Both the Main Program and the Stability Routine: 

DELTAT 

EPSLON 

PRINT 

K1K2 

L 

M 

N 

T 

TCRIT 

TINCR 

TPREV 

Y 

YP 

time increment; defined in MAIN 

allowable oscillation magnitude; defined in MAIN 

when IPl3.INT = 0, there is a printout every stable or  unstable transient; if 
IPFUNT # 0, there  is a printout only for  a neutral point (slope = 0); de- 
fined in MAIN 

identifies the system as being stable, unstable, conditionally, uncondition- 
Utilized by subroutine change logic; ally or  neutrally stable or unstable. 

calculated in DIGSTA 

equal to 1 when f ( t )  is not equal to constant for  first time; set in MAIN 

equal to 0 until DIGSTA is entered; set in MAIN 

number of successive stability curve points required to be within €-band of 
. 

bias; defined in MAIN 

current system running time; developed in MAIN 

allowable time to identify the behavior of the system; defined in MAIN 

allowable increment to increase TCRIT; defined in MAIN 

previous T; defined in MAIN 

variable being tested in DIGSTA; developed in MAIN f(t) 

previous Y; defined in MAIN 

Other FORTRAN Variables Used in the Stability Program: 

BIAS 

EXTR extrema 

KOUNT1 

KOUNT2 

RAV running average 

converged value of the running average 

number of successive points (BIAS) identical within cl-band 

number of successive stability curve points within €-band of BIAS 
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APPENDIX B 

FORTRAN PROGRAM 

To assist in explaining the computer coding of the DIGSTA stability analysis, a flow 
diagram (fig. 12) and a listing of the program are presented. 

DIGSTA 
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6 
Determine if the 
initial check is 
for a maximum 1 or minimum 

Q CI Deter mine 

Beat and high 
frequency 
oscillation 

BIAS could not be 
found. System 
is unstable 

Figure 12 - Continued. 
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beating 

@ Write 

Unconditionally 0 
System 

= O  

System is 
neutrally 
stable or 
unstable 

'0 System is <O 
conditionally 
stable or unstable 

1- 

unconditionally 

Figure 12. - Concluded. 
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S U B R O U T I N E  D I G S T A  ( I P R I N T T K ~ K ~ T L T M T N T O E L T A T T E ~ S L U ~ T T T T P R E V T Y T Y P T  
1 T C R I T T T I N C K  1 

O E L T A T t  E P S L O N T  T C K I T T  T I N C K t  I P R I N T T  A N D  N MUST H E  I N I T I A L I Z E D  I N  T H E  
M A I N  PROGRAM 

TI T P T  Y T  Y P T  L T  A N 0  M MUST B E  C A L C U L A T E D  I N  T H E  M A I N  PKOGRAM 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

2 0  

GO TO 20 

GO TO 40 

A 
B 
C 
D - 
E 
F 
I P R I N T  = 
J 
JJ  
K 
K O U N T l  = 
K O U N T 2  = 
K O U N T 3  = 
K O U N T 4  = 
K O U N T 5  = 

K O U N T 6  = 

K 1 K 2  = 
L 
M 
N 
B E X T R  = 
E X T R  = 
R A V  = 
R X  - 
X E X T R  = 

- - 
- - 
- - 
- 
- - 
- - 
- - 
- - 
- - 

- - 
- - 
- - 

- 

T R U E  - S E A R C H I N G  FOR M I N I M I M  
F A L S E  - T O  R E S E T  K O U N T l  = 0 
T R U E  - B I A S  H A S  B E E N  FOUND 
F A L S E  - EXTREMUM H A S  B E E N  FOUND 
T R U E  - NO B E A T  PHENOMENA OR H I G H  FKEOUENCY D S C I L .  H A V E  OCCUKKED 
T K U E  - NO SECOND ORDER B E A T  PHENOMENA OR H I G H  FKEOlJENCY OSC. 
0 - I N T E R M E D I A T E  P R I N T  O U T S  E L I M I N A T E D  
NO. O F  EXTREMA 
NO. OF EXTREMA OF EXTREMA 
NO. O F  S a c .  P O I N T S  
NO. OF SLJCCESSIVE PTS. ( B I A S )  I D E N T I C A L  W I T H I N  E l  RAND 

NO. OF S U C C E S S I V E  S L O P E S  I N D I C A T I N G  A B E A T  OK H I G H  FREO. OSC. 
NO. O F  S U C C E S S I V E  S L O P E S  I N D I C A T I N G  NO R E A T  OR H I G H  FREO. OSC.  
NO. O F  S U C C E S S I V E  S L O P E S  I N D I C A T I N G  A SECOND OKDER B E A T  OK 

NO. O F  S U C C E S S I V E  S.C.  PTS.  W I T H I N  E B A N D  O F  B I A S  

H I G H  FREO. OSC. 
NO. O F  S U C C E S S I V E  S L O P E S  I N D I C A T I N G  NO SECOND OKDEK B E A T  OR 
H I G H  FREO. DSC. 
K 1  + K 2 7  I N D I C A T E S  N A T U R E  O F  S T A B I L I T Y  O F  T H E  S Y S T E M  
1 WHEN Y IS NOT ZERO FOR T H E  F I K S T  T I M E  
0 WHEN T H E  S U B R O U T I N E  I S  E N T E R E D  FOK T H E  F I K S T  T I M E  

EXTREMA O F  E X T K E M A  
EXTREMA 
R U N N I N G  AVERAGE O F  D A T A  P O I N T S  FOR T H E  S D L l J T I O N  O F  T H E  B I A S  
V A L U E  OF R U N N I N G  AVERAGE WHEN K O U N T l  = 0 

NO. O F  S U C C E S S I V E  S . C .  PTS. K E O U I K E I I  TO B E  W I T H I N  E B A N D  O F  B I A S  

S T A B I L I T Y  C lJRVE 1 S . C . )  P O I N T  I L O C I I S  OF E X T K E M A )  
I N I T I A L  C O N D I T I O N S  FOR R U N N I N G  AVERAGE AND S T A B I L I T Y  CURVE CHECKS 

B I A S  = 1.OE+35 
B E X T R  = 0.0 
B E X T P  = 0.0 

B E X T P 3  = 0.0 
C E X T R  = 0.0 

C E X T P P  = 0.0 

E X T R  = 0.0 
E X T R P  = 0.0 
E X T R P P  = 0.0 
R A V  = 0.0 
RX = 0.0 

B E X T P P  = 0.0 

C E X T P  = 0.0 

C E X T P 3  = 0.0 
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S L O P E 1  = 0.0 
S L O P E 2  = 0.0 
T B  = 0.0 
T B P  = 0.0 
T R P P  = 0.0 
TC = 0.0 
T C P  = 0.0 
T C P P  = 0.0 
T T  = 0.0 
T T P  = 0.0 
T T P P  = 0.0 
T R A V  = 0.0 
X = 0.0 
X E X T R  = 0.0 
XRAV = 0.0 
XY = 0.0 
Y 1  Y 
2 = 0.0 
I K  = o  
J = o  
JJ = o  
J B  = o  
J B P  = 0 
J S  = o  
J S P  = 0 
K = o  
K 1  = o  
K 1 K 2  = 0 
K O U N T l  = 0 
KOlJNT2 = 0 
K O U N T 3  = 0 
K O U N T 4  = 0 
K O U N T 5  = 0 
K O U N T 6  = 0 
€3 = .FALSE.  
C = .FALSE.  
E = .TRIJE. 
F = .TRUE. 

- - 

L 
L 
C 

40 R P P  = K P  
50 R P  = RAV 

I F  ( T  .EO. 0.0) 
R A V  = ( R P * T P R E V / D E L T A T  + Y ) + D E L T A T / T  
I F  ( A B S ( R A V  - R X )  .LE. X Y )  
C = .FALSE.  
B I A S  = 1 .OE+35 
T B I A S  = 0.0 
K O U N T l  = 0 

70 I F  ( L  - 2 )  
80  Y 2  = Y  

I F  ( Y 2  .GT. Y 1 )  
A = .TRUE. 
GO TO 1150  

GO T O  1150  
100 A = .FALSE.  

R U N N I N G  AVERAGE CHECK 

GO T O  10 

GO TO 70 

11509 809 1 1 0  

GO TO 100 

L 
C 
C 

S T A B I L I T Y  CURVE CHECK 
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110 
1 2 0  

130 

140 
1 5 0  

C 
C 
C 

170 
1 8 0  

2 1 0  

2 5 0  

2 7 0  

2 9 0  

3 0 0  

3 1 0  
3 2 0  

3 30 

3 4 0  

I F  ( Y  - Y P I  
I F  ( A I  
A = .TRUE. 
GO TO 1 5 0  
I F  ( A I  
GO TO 6 5 0  
A = .FALSE.  
J = J + 1  
E X T R P 3  = E X T R P P  
E X T R P P  = E X T K P  
E X T R P  = E X T R  
E X T K  = YP 

B E A T  OR H I G H  F K E Q l l E N C Y  O S C I L L A T I O N  

EXEX = EXTR - E X T R P P  
J S P P  = J S P  
J S P  = J S  
I F  ( A B S ( E X E X 1  .GT. 1 .OE-07x :EXTKl  
J S  = J S P P  
GO TO 1 8 0  
J S  
I F  ( J  .LT. 4 )  
I F  ( J / 2 * 2  .NE. J I  
I F  ( E l  
GO TO 6 5 0  
I F  ( J S  .EO.  J S P P I  
KOIJNT4 = 0 
K O U N T 3  = KOUNT3 + 1 
I F  ( K O U N T 3  . L T .  N )  
I F  ( I K  .LT.  2 1  
GO TO 300 
I F  ( J S  .EO.  J S P P I  
KOIJNT4 = 0 

= s I l;N ( 1 - 0  9 E x E x 1 

I F  ( E l  
GO TO 310 
I F  ( E l  
K O U N T 4  = K O U N T 4  
I F  ( K O U N T 4  .LT.  
E = .TRUE. 
KUUNTZ = 0 
K O U N T 3  = 0 
I K  = o  
GO TO 5 5 0  
K O U N T 3  = KOUNT3 
I K  = I K  + 1 
I F  ( K O U N T 3  .LT.  
E = . F A L S E .  
J S P P  = J S  
X Y Z 5  = E X T R P P  

+ 1  
2 * N )  

+ l  

N I  

I F  ( J S I  
X Y Z 5 P  = A M A X L ( X Y Z ~ T E X T K P )  
X Y Z 5  = A M I N ~ ( E X T K I E X T R P , E X T R P P ~ E X T R P ~ ~ X Y Z ~ ~  
I F  ( J S P P I  
X Y Z S P  = A M I N l ( X Y Z 5 , E X T R P )  
X Y Z 5  = A M A X ~ ( E X T R T E X T K P T E X T K P P T E X T R P ~ T X Y ~ ~ I  
I F  ( J S P P )  
R E X T P 3  = B E X T P P  
R E X T P P  = B E X T P  
R E X T P  = B E X T K  

1 2 0 ,  6 5 0 ,  130 
GO TO 6 5 0  

GO TO 140 

CHECK 

GO TO 1 7 0  

GO TO 5 5 0  
GO TO 2 5 0  
GO TO 2 1 0  

GO TO 5 5 0  

GO TO 5 5 0  
J = J + l  

GO TO 270 

GO TO 2 9 0  

GO TO 5 5 0  

GO TO 310 

GO TO 5 5 0  

3 2 0 7  6 5 0 1  3 3 0  

6 5 0 7  6 5 0 .  340 

3407 6 5 0 9  6 5 0  
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R E X T R  = X Y Z 5 P  
K O U N T 3  = K O U N T 3  + 1 
JJ = J J + 1  
B X B X  = H E X T R  - E E X T P P  
J R P P  = J B P  
J B P  = J R  
I F  ( A E S ( B X B X )  .GT. l .OE-O7*BEXTR)  
J B  = J B P P  
GO T O  370 

370 I F  ( J J  .LT. 4 )  
360 J B  = S I G N ( 1 . O q B X B X )  

I F  ( J J / 2 * 2  .NE. JJ )  
I F  ( F )  
GO TO 6 5 0  

400 I F  ( J B  .EQ. J B P P )  
K O U N T b  = 0 
K O U N T 5  = K O U N T 5  + 1 
I F  ( K O U N T 5  .LT.  N )  
I F  ( K I  .LT. 2 )  
GO T O  490 

440 I F  ( J B  .EO. J E P P )  
KOlJNT6  = 0 
I F  ( F )  
GO TO 500 

460 I F  ( F )  
K O U N T 6  = K O U N T 6  + 1 
I F  ( K O U N T 6  .LT. 2 + N )  
F = .TRUE. 
KOlJNT2  = 0 
KOIJNT5 = 0 
K I  = o  
GO TO 5 4 0  

480 K O U N T 5  = K O U N T 5  + 1 
K I  = K I  + 1 
I F  ( K O U N T 5  .LT. N )  GO TO 540 

490 F = .FALSE.  
J B P P  = J E  
X Y Z 6  = B E X T P P  

500 IF ( J B )  5101 650r  5 2 0  
510 X Y Z 6 P  = A M A X l ( X Y Z 6 r E E X T P )  

X Y Z 6  = A M I N l ( B E X T R q R E X T P r E E X T P P ~ E E X T P 3 r X Y Z 6 )  
I F  ( J E P P )  6507 6 5 0 1  5 3 0  

X Y Z 6  = A M A X l ( B E X T R ~ B E X T P v B E X T P P y B E X T P 3 r X Y Z 6 )  
I F  ( J E P P )  530r  650 r  650 

5 2 0  X Y Z 6 P  = A M I M l ( X Y Z 6 r R E X T P )  

5 3 0  C E X T P 3  = C E X T P P  
C E X T P P  = C E X T P  
C E X T P  = C E X T R  
C E X T R  = X Y Z 6 P  
K O U N T 5  = K O U N T 5  + 1 
X Y Z l  = C E X T K  
X Y Z 2  = C E X T P  
X Y Z 3  = C E X T P P  
X Y Z 4  = C E X T P 3  
T C P P P  = T C P P  

T C P  = T C  
TC = T P K E V  
T P P P  = T C P P P  
T P P  = T C P P  

T C P P  = r c p  

GO TO 360 

GO T O  540 
GO TO 440 
GO T O  400 

GO TO 5 4 0  

GO T O  5 4 0  
JJ = JJ+1 

GO TO 460 

GO T O  460 

GO TO 540 

GO T O  500 
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T P  = T C P  
T K A V  = T C  
GO T O  560 

540 X Y Z l  = B E X T K  
X Y Z Z  = B E X T P  
X Y Z 3  = B E X T P P  
X Y Z 4  = B E X T P 3  
T B P P P  = T E P P  
T B P P  = T B P  
T B P  = Ti3 
T B  = T P R E V  
T P P P  = T B P P P  
T P P  = T E P P  
T P  = T B P  
T R A V  = T B  
GO TO 560 

C 
550  X Y Z l  = E X T K  

X Y Z Z  = E X T R P  
X Y Z 3  = E X T K P P  
X Y Z 4  = E X T K P 3  
T T P P P  = T T P P  
T T P P  = T T P  
T I P  = T T  
T T  = T P R E V  
T P P P  = T T P P P  
T P P  = T T P P  
T P  = T T P  
T R A V  = T T  

5 6 0  D = .FALSE.  
650 I F  ( C )  

I F  ( € 3 )  
K X  = R A V  
K O U N T l  = 0 
B = .TRUE. 
GO TO 690 

660 I f  ( A B S ( K A V )  .GT. 1.0) 
XY = O E L T A T * . O l  
GO TO 670 

665  XY = . 0 0 1 * A B S ( K X )  
670 I F  ( A B S ( R A V  - R X )  .GT. X Y )  

K O U N T l  = K O U N T l  + 1 
I F  ( K O U N T 1  - N )  

680  B = .FALSE.  
690 I F  ( T  .LT. T C R I T )  

W R I T E  ( 6 9 3 0 0 0 )  T I J , R P V R A V , R P P T R X T E X T R , E X T R P  
K 1  = 2  
I F  ( F  
J Z  = J R  
J Z P  = J B P  
GO TO 7 2 0  

710 I f  ( E  
J Z = J S  
J Z P  = J S P  

720 W K I T E  (6 ,6000)  X Y Z 3 , X Y Z 2 r X Y Z l  

730 I F  ( A B S ( R P  - K A V )  .GE. A B S ( R P P  - K P ) )  
740 K 2  = 3  

750 K 2  = 6  

I f  ( A B S ( J 2 )  - A B S ( J Z P ) )  

GO TO 1140 

GO TO 780 
GO TO 660 

GO TO 665 

GO TO 680 

690, 7 6 0 1  760 

GO TO 1150 

GO TO 710 

GO T O  730 

740, 7 5 0 r  750 
GO TO 750 
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GO TO 1140 
760 C = .TRUE. 

T B I A S  = T 

B I A S  = RAV 
I F  ( T  .GE. T C K I T )  
I F  ( D )  
X E X T R  = A B S ( X Y Z 1  - B I A S )  

K O U N T 2  = K O U N T 2  + 1 
I F  l K O U N T 2  - N )  

GO T O  1 1 5 0  

K Z  = 3  
GO TO 875  

K 1  = 2  
GO T O  890 

870 K 2  = 6  

K 1  = 1  
GO TO 1140 

8 8 0  K 1  = 1  
890 S L O P E 1  = X Y Z l  - X Y Z 3  

7 8 0  I F  ( A E S ( K A V )  .LE. . O l * A E S ( X Y Z l ) )  

I F  ( X E X T R  .GT. 1 . 0 0 0 0 1 * E P S L O N )  

810 K O U N T Z  = 0 

830 I F  ( K O U N T 2  .LE. 0 )  

850 I F  ( X E X T R  .LE. 0.0) 

8 7 5  W R I T E  (694000)  J ~ K O U N T ~ ~ T I B I A S I T E I A S ~ T R A V ~ T P  

I F  ( A B S ( S L O P E 1 )  .LE. l . O E - 5 * A B S I X Y Z . l ) )  
I F  ( S L O P E l )  

GO T O  930 

GO TO 930 

900 M 1  = o  
910 M 1  = 1  

920  M l  = 2  
930 S L O P E 2  = X Y Z 2  - X Y Z 4  

I F  ( A B S ( S L O P E 2 )  .LE. l . O E - 5 * A B S ( X Y Z 2 )  1 
I F  ( S L O P E 2 1  

940 M 2  = 0  

950  M 2  = 3  

960 M2 = 6  
Y 7 0  MM = M 1  + M2 + 1 

GO TO 970 

GO TO 970 

MN = S I G N (  1 . O v X Y Z l - X Y Z 2  
GO T O  ~ 9 8 0 ~ 9 9 0 ~ 1 0 0 0 ~ 1 0 0 0 ~ 1 0 1 0 ~ 1 0 0 0 ~ 9 9 0 ~ 9 9 0 ~ 1 0 1 0 ~  

980  S L O P E  = 0.0 
GO TO 1 0 2 0  

GO T O  1030 

GO T O  1030 

S L O P E  = S I G N ( l . O v X K K ) * 9 . 9  
GO TO 1060 

1 0 2 0  K 2  = 9  
K 3  = 10 
K 4  = 11 
GO TO 1110 

1030 I F ( K 1  .GT. 1) 
I F  ( S L O P E  .GT. 0 .0 )  

1050 K 2  = 6  
K 3  = 7  

990 S L O P E  = -MN 

1000 S L O P E  = +MN 

1010 XKK = K l * ( 1  - K l )  + 1 

K A V  = 0.0 

GO TO 830 
GO TO 1150 

GO T O  8-10 

1 1 5 0 9  8 8 0 9  880 

GO TO 850 

GO TO 870 

GO TO Y O 0  
9109 Y O 0 9  920 

GO TO 940 
950, 9409 960 

, MM 

GO T O  1100 
GO T O  1060 
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. 

K 4  = 8  
GO T O  1110 

1060 K 2  = 3  
K 3  = 4  
K 4  = 5  
I F  ( K 1  .GT. 1 )  GO T O  1110 
I F  ( T  - T K A V  .LT. T I N C R )  ti0 TO 1110 
W K I T E  ( 6 1 5 0 0 0 )  T t T I N C R  

GO TO 1140 
1090 K 2  = 6  

1100 I F  ( S L O P E )  10601 10601 1050 
1110 I F  ( I P R I N T  .GT. 0 )  GO T O  1130 

I F  ( K 2  .LE. 8 )  GO T O  1140 
1130 W R I T E  (612000) X A ( K ~ ) I S L O P E I B I A S , T I X A ( K ~ ) , X A ( K ~ ) , X A ( K ~ ) , X A ( K ~ ) I  

l X E X T R  
1140 K l K 2  = K l  + K 2  
1150 R E T U R N  
2000 FORMAT ( / / / / P O X l O H S Y S T E M  I S  A ~ T ~ O H S T A B L E  A N D  S L O P E  = F6.19 1 0 H -  

l B I A S  = G 1 5 . 8 r 5 X 7 H T I M E  = G 1 5 . 8 / / 4 5 X l O H S Y S T E M  IS ~ A ~ I A ~ T ~ H S T A B L E / /  
2 5 0 X 8 H X E X T K  = G 1 5 . 8 )  

3000 F O K M A T ( / / / / 2 0 X 3 1 H B I A S  COlJLD NOT BE FOUND W I T H I N  G 1 5 . 8 9 5 H  SEC.75Xv 
1 1 5 7 2 1 H  EXTREMA WERE FOUNO. /15X5HRP = G ~ ~ . H I ~ X ~ H K A V  = G15.815X 
2 6 H R P P  = G 1 5 e 8 1 5 X 5 H R X  = G 1 5 . 8 / 4 0 X 7 H E X T R  = G 1 5 . 8 r S X B H E X T R P  = G 1 5 . 8 / /  

4000 FORMAT ( 2 0 X 1 1 5 1 1 3 H  EXTREMA AND I 5 1 4 6 H  S T A B I L I T Y  CURVE P O I N T S  C O U L D  
1 B E  FOUND W I T H I N  G ~ ~ . B , ~ H S E C . / ~ ~ X I ~ H B I A S  = G 1 5 . 8 1 1 0 H 1  T B I A S  = 
2 G 1 5 . 8 1 1 0 H 1  T E X T R  = G 1 5 . 8 1 1 9 H ~  P R E V I O U S  T E X T R  = G 1 5 . 8 / / 8 X 1 1 6 H I F  THE 
3 P E R I O D  I S  R E L A T I V E L Y  LONG, I N C R E A S E  T C R I T .  ALSO, T H E  B I A S  CONVERG 
4 E N C E  R E Q U I R E M E N T  MAY BE MADE MORE S T R I N G E N T . )  

5000 FOKMAT ( / / / / 3 1 X 7 H T I M E  = G 1 5 . 8 1 3 8 H  SEC. NO EXTREMA H A V E  B E E N  FOUND 
1 FOR G 1 5 . 8 1 5 H  S E C . / / 3 1 X 6 9 H A S S U M E  T H E  S Y S T E M  I S  OVERDAMPED AND THER 
2 E F O R E  U N C O N O I T I O N A L L Y  S T A B L E . / / / / )  

1 OCCURRED. THE EXTKEMA O F  THE EXTREMA A R E / Z O X 8 H E X T P P  = G15 .8 , lOX 

3 2 5 X 4 0 H T H E  S Y S T E M  I S  C O N S I O E R E D  TO B E  UNSTABLE. )  

6000 FORMAT 1 2 0 X 9 3 H T H E  S Y S T E M  I S  B E A T I N G  OR H I G H  FREQUENCY O S C I L L A T I O N S  

2 7 H E X T P  = G ~ ~ . ~ I ~ O X ~ H E X T R  = G 1 5 . 8 )  
7000 FORMAT ( l X 2 A 2 1 9 A 6 )  

E N D  
$ D A T A  

UN C O N D I T I O N A L L Y  U N C O N D I T I O N A L L Y  N E U T R A L L Y  
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APPENDIX C 

RUNNING AVERAGE CONVERGENCE 

Theorem: If f ( t )  is a bounded r ea l  function defined on the interval [O,m) and piece- 
wise continuous, then the running average 

must converge in the sense that 

lim - d ( M V )  = 0 
T--oo dt 

Proof: The running average is differentiable; hence, 

Consider the first te rm on the right side of equation (B l ) .  

function, let C > 0 be given. Then, since f(t) is bounded over the interval, there 
exists a number M > 0 such that 

To establish lim 
T-w 

of this 

- 

Now, for  T > 0 ,  

For  any C > 0 there exists a number N such that, for  T > N > 0, - - 

M - < c  
T -  
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or  

Thus, 

Considering the second term on the right side of equation (Bl),  let a number C > 0 be 
given. Again since f ( t )  is bounded over the interval, there exists a number M such that 

-M < f ( t )  < M - - 

It follows therefore that 

Thus, 

is bounded, and 

Now, for  T > 0 ,  
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Again fo r  any C > 0 there  exists a number N such that fo r  all T > N > 0 - 

f o d t  
T 

M - < c  
T -  

- < C  

or  

Thus 

l.dw, from equations ( B l ) ,  (B , and (B3) it follows that 

which establishes the theorem. 
Corollary: It logically follows then that if the running average 

T 
RAV = f f(t)dt 

0 

does not converge in the sense that 
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lim - d (RAV) = 0 
T-a dT 

and, if f(t) is a piecewise continuous real function defined on the interval [0, m), then 
f( t )  cannot be bounded over the interval. 

if necessary) and if the running average does not converge to give the bias, then f(t) is 
unbounded and, therefore, unstable. In DIGSTA this is approximated by requiring con- 
vergence within TCRIT. 
tical systems. ) The program further requires that 

This, then, establishes the concept that, if given a sufficient amount of time (infinite, 

(Since TCRIT can be picked to look like infinity for most prac- 

d -RAv=o 
dT 

for N consecutive t imes.  
With slightly more difficulty, the following theorem can also be shown. 
Theorem: If f ( t ) ,  f ( t ) ,  . . . , fn(t)  are piecewise continuous, bounded real functions 

defined on the interval [0, a), then the running average 

must converge in the sense that 

dn lim - (Mv) = 0 for n = 1, 2, . . . 
Tea dT" 

This is, of course, a stronger convergence requirement. 
vergence is not achieved, then either f( t )  or one of its derivatives is not bounded (there- 
fore  unstable). This is a stronger stability statement. The convergence requirement of 
the program more closely resembles this requirement (because of the n consecutive 
d RAV/dt = 0 checks). 

However, if this kind of con- 
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